本文共 3286 字,大约阅读时间需要 10 分钟。
“鸟儿啊,听说微软至SQL Server 2012以来,推出了一种全新的基于列式存储的索引,你去研究看看SQL Server on Linux对这个功能的支持度如何,效率有多大的提升?”。老鸟又迫不及待的开始给菜鸟分配任务。
的确如老鸟所说,从SQL Server 2012开始推出了列存储索引,这个版本限制颇多,但是它对统计查询的效率提升又是实实在在的。所以,让我们来看看SQL Server on Linux列存储索引对统计查询的效率提升情况如何。
这里也顺便提一下SQL Server 2012 列存储索引的限制,比如:非聚集列存储索引是只读的,换句话说,基表会变成Read-Only仅支持非聚集列存储索引只能通过删除及创建索引的方式重建索引,而不可使用ALTER INDEX命令对应的表不可包含唯一性约束、主键约束或外键约束......这一小节,我们以一组对比测试来看看列存储索引相对于B-Tree索引对统计查询的效率提升,真正是强大到没有敌人。
测试之前,我们需要创建测试表对象,B-Tree索引和列存储索引,并且初始化500万条记录数据,做为测试的基础数据。
use tempdbGOIF OBJECT_ID('dbo.Table_with_5M_rows','U') IS NOT NULL DROP TABLE dbo.Table_with_5M_rowsGOCREATE TABLE [dbo].[Table_with_5M_rows]( [OrderItemId] [bigint] NULL, [OrderId] [int] NULL, [Price] [int] NULL, [ProductName] [varchar](240) NULL) ON [PRIMARY]GO;WITH a AS ( SELECT * FROM (VALUES(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)) AS a(a))INSERT INTO Table_with_5M_rowsSELECT TOP(5000000) OrderItemId = ROW_NUMBER() OVER (ORDER BY a.a) ,OrderId = a.a + b.a + c.a + d.a + e.a + f.a + g.a + h.a ,Price = a.a * 10 ,ProductName = cast(a.a as varchar) + cast(b.a as varchar) + cast(c.a as varchar) + cast(d.a as varchar) + cast(e.a as varchar) + cast(f.a as varchar) + cast(g.a as varchar) + cast(h.a as varchar)FROM a, a AS b, a AS c, a AS d, a AS e, a AS f, a AS g, a AS h;GO--Create regular indexCREATE NONCLUSTERED INDEX IX_OrderId_@priceON dbo.Table_with_5M_rows(OrderId)INCLUDE(price) WITH(ONLINE =ON)GO--create columnstore indexCREATE CLUSTERED COLUMNSTORE INDEX CSIX_Table_with_5M_rows ON dbo.Table_with_5M_rows;GO
对象创建完毕后,截图如下:
首先,我们来测试使用B-Tree常规索引的查询效率,业务场景是统计每一个订单的消费总额和平均每单价格。这里,我们强制查询语句使用索引IX_OrderId_@price,需要注意的地方是,在执行查询语句之前,我们需要清空缓存来避免缓存对执行结果的影响。查询语句如下:
--clear data cacheDBCC DROPCLEANBUFFERS DBCC FREEPROCCACHE GO--open statisticsSET STATISTICS IO ON SET STATISTICS TIME ON GO--Testing using B-tree indexSELECT OrderId ,totalAmount = sum(price) ,avgPrice = avg(price)FROM Table_with_5M_rows WITH(NOLOCK, INDEX=IX_OrderId_@price)GROUP BY OrderIdGO
同样的道理,在对比组查询测试最开始,我们需要清空SQL Server缓存,然后强制使用列存储索引CSIX_Table_with_5M_rows,语句如下:
--clear data cacheDBCC DROPCLEANBUFFERS DBCC FREEPROCCACHE GO--Testing using Column store indexSELECT OrderId ,totalAmount = sum(price) ,avgPrice = avg(price)FROM Table_with_5M_rows WITH(NOLOCK, INDEX=CSIX_Table_with_5M_rows)GROUP BY OrderIdGO
两组查询测试语句执行完毕,以下我通过统计信息和执行计划两个方面来对比测试结果。
B-Tree索引查询统计信息:Table 'Table_with_5M_rows'. Scan count 1, logical reads 16136, physical reads 0, read-ahead reads 7, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. SQL Server Execution Times: CPU time = 1295 ms, elapsed time = 1313 ms.
列存储索引查询统计信息:
Table 'Table_with_5M_rows'. Scan count 1, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 73, lob physical reads 7, lob read-ahead reads 0.Table 'Table_with_5M_rows'. Segment reads 6, segment skipped 0. SQL Server Execution Times: CPU time = 5 ms, elapsed time = 15 ms.
从查询执行的统计信息输出来看,基于B-Tree索引的查询逻辑读IO为16136,CPU消耗为1295毫秒,执行时间为1313毫秒,而基于列存储索引的查询逻辑读IO为0,CPU消耗为5毫秒,执行时间15毫秒。CPU和执行时间上有259倍和87倍的性能提升。
B-Tree索引查询执行计划截图:SQL Server on Linux对列存储索引的支持这点非常强大,对于统计查询效率的提升尤其是IO的提升相当明显。
转载地址:http://shial.baihongyu.com/